Effect of scattering and contacts on current and electrostatics in carbon nanotubes

نویسنده

  • M. P. Anantram
چکیده

We computationally study the electrostatic potential profile and current carrying capacity of carbon nanotubes as a function of length and diameter. Our study is based on solving the nonequilibrium Green’s function and Poisson equations self-consistently, including the effect of electron-phonon scattering. A transition from the ballistic to diffusive regime of electron transport with an increase of applied bias is manifested by qualitative changes in the potential profiles, differential conductance, and electric field in a nanotube. In the low-bias ballistic limit, most of the applied voltage drop occurs near the contacts. In addition, the electric field at the tube center increases proportionally with diameter. In contrast, at high biases, most of the applied voltage drops across the nanotube, and the electric field at the tube center decreases with an increase in diameter. We find that the differential conductance can increase or decrease with bias as a result of an interplay of nanotube length, diameter, and a quality factor of the contacts. From an application viewpoint, we find that the current carrying capacity of nanotubes increases with an increase in diameter. Finally, we investigate the role of inner tubes in affecting the current carried by the outermost tube of a multiwalled nanotube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 Effect of scattering and contacts on current and electrostatics in carbon nanotubes

We computationally study the electrostatic potential profile and current carrying capacity of carbon nanotubes as a function of length and diameter. Our study is based on solving the non equilibrium Green’s function and Poisson equations self-consistently, including the effect of electronphonon scattering. A transition from ballistic to diffusive regime of electron transport with increase of ap...

متن کامل

A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors

Phonon scattering in carbon nanotube field-effect transistors CNTFETs is treated using the nonequilibrium Green’s function formalism with the self-consistent Born approximation. The treatment simultaneously captures the essential physics of phonon scattering and important quantum effects. For a one-dimensional channel, it is computationally as efficient as and physically more rigorous than the ...

متن کامل

Automated probe microscopy via evolutionary optimization at the atomic scale

We use numerical simulations to investigate the effect of electrostatics on the source and drain contacts of carbon nanotube field‐effect transistors. We find that unscreened charge on the nanotube at the contact‐channel interface leads to a potential barrier that can significantly hamper transport through the device. This effect is largest for intermediate gate voltages and for contacts near t...

متن کامل

(RETRACTED PAPER) Survey of Thermal Conductivity Carbon Nanotubes(TCCN) The Publisher and Editor retract this article based on the Publication Ethics

(RETRACTED PAPER) The Publisher and Editor retract this article based on the Publication Ethics In this project,Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented ...

متن کامل

Electrical contacts to one- and two-dimensional nanomaterials.

Existing models of electrical contacts are often inapplicable at the nanoscale because there are significant differences between nanostructures and bulk materials arising from unique geometries and electrostatics. In this Review, we discuss the physics and materials science of electrical contacts to carbon nanotubes, semiconductor nanowires and graphene, and outline the main research and develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005